Rhizosphere bacterial communities differ among traditional maize landraces

Research output: Contribution to journalJournal articlepeer-review

Documents

  • Fulltext

    Final published version, 2.41 MB, PDF document

The plant-associated microbiome has been shown to vary considerably between species and across environmental gradients. The effects of genomic variation on the microbiome within single species are less clearly understood, with results often confounded by the larger effects of climatic and edaphic variation. In this study, our objective was to confirm that maize genomic variation effects the rhizosphere bacterial communities in the absence of confounding environmental variation. This was investigated by comparing different maize lines grown within controlled environments. Rhizosphere bacterial communities were profiled by metabarcoding the universal bacterial 16S rRNA v3-v4 region. Initially, plants from the inbred B73 line and the traditional Ancho landrace were grown for 12 weeks and compared. The experiment was then repeated with an additional four Mexican landraces (Apachito, Tehua, Serrano, and Harinoso) that were grown alongside additional B73 and Ancho plants. In both experiments, there were significant compositional differences in the rhizosphere bacteria associated with different genotypes. Additionally, we found that genetic distance (phylogenetic) correlated with bacterial community similarity (i.e., more closely related lines had more similar rhizosphere bacteria). We therefore confirm that heritable variation in maize landraces is associated with differences in the rhizosphere bacterial communities. Further studies are required to identify the mechanisms that translate variation in the genome to predictable variation in the root microbiome, which could potentially be exploited to optimize the root microbiome for particular functions as part of crop improvement strategies.

Original languageEnglish
JournalEnvironmental DNA
Volume4
Issue number6
Pages (from-to)1241-1249
Number of pages9
ISSN2637-4943
DOIs
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
© 2022 The Authors. Environmental DNA published by John Wiley & Sons Ltd.

    Research areas

  • Bacteria, genomic variation, microbiome, rhizosphere, Zea mays

ID: 322882803