Protein sequences bound to mineral surfaces persist into deep time

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Protein sequences bound to mineral surfaces persist into deep time. / Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa; Freeman, Colin L.; Woolley, Jos; Crisp, Molly K.; Wilson, Julie; Fotakis, Anna Katerina; Fischer, Roman; Kessler, Benedikt M.; Jersie-Christensen, Rosa Rakownikow; Olsen, Jesper Velgaard; Haile, James; Thomas, Jessica; Marean, Curtis W.; Parkington, John; Presslee, Samantha; Lee-Thorp, Julia; Ditchfield, Peter; Hamilton, Jacqueline F.; Ward, Martyn W.; Wang, Chunting Michelle; Shaw, Marvin D.; Harrison, Terry; Domínguez-Rodrigo, Manuel; MacPhee, Ross D. E.; Kwekason, Amandus; Ecker, Michaela; Kolska Horwitz, Liora; Chazan, Michael; Kröger, Roland; Thomas-Oates, Jane; Harding, John H.; Cappellini, Enrico; Penkman, Kirsty; Collins, Matthew James.

In: eLife, Vol. 5, e17092, 2016.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Demarchi, B, Hall, S, Roncal-Herrero, T, Freeman, CL, Woolley, J, Crisp, MK, Wilson, J, Fotakis, AK, Fischer, R, Kessler, BM, Jersie-Christensen, RR, Olsen, JV, Haile, J, Thomas, J, Marean, CW, Parkington, J, Presslee, S, Lee-Thorp, J, Ditchfield, P, Hamilton, JF, Ward, MW, Wang, CM, Shaw, MD, Harrison, T, Domínguez-Rodrigo, M, MacPhee, RDE, Kwekason, A, Ecker, M, Kolska Horwitz, L, Chazan, M, Kröger, R, Thomas-Oates, J, Harding, JH, Cappellini, E, Penkman, K & Collins, MJ 2016, 'Protein sequences bound to mineral surfaces persist into deep time', eLife, vol. 5, e17092. https://doi.org/10.7554/eLife.17092

APA

Demarchi, B., Hall, S., Roncal-Herrero, T., Freeman, C. L., Woolley, J., Crisp, M. K., Wilson, J., Fotakis, A. K., Fischer, R., Kessler, B. M., Jersie-Christensen, R. R., Olsen, J. V., Haile, J., Thomas, J., Marean, C. W., Parkington, J., Presslee, S., Lee-Thorp, J., Ditchfield, P., ... Collins, M. J. (2016). Protein sequences bound to mineral surfaces persist into deep time. eLife, 5, [e17092]. https://doi.org/10.7554/eLife.17092

Vancouver

Demarchi B, Hall S, Roncal-Herrero T, Freeman CL, Woolley J, Crisp MK et al. Protein sequences bound to mineral surfaces persist into deep time. eLife. 2016;5. e17092. https://doi.org/10.7554/eLife.17092

Author

Demarchi, Beatrice ; Hall, Shaun ; Roncal-Herrero, Teresa ; Freeman, Colin L. ; Woolley, Jos ; Crisp, Molly K. ; Wilson, Julie ; Fotakis, Anna Katerina ; Fischer, Roman ; Kessler, Benedikt M. ; Jersie-Christensen, Rosa Rakownikow ; Olsen, Jesper Velgaard ; Haile, James ; Thomas, Jessica ; Marean, Curtis W. ; Parkington, John ; Presslee, Samantha ; Lee-Thorp, Julia ; Ditchfield, Peter ; Hamilton, Jacqueline F. ; Ward, Martyn W. ; Wang, Chunting Michelle ; Shaw, Marvin D. ; Harrison, Terry ; Domínguez-Rodrigo, Manuel ; MacPhee, Ross D. E. ; Kwekason, Amandus ; Ecker, Michaela ; Kolska Horwitz, Liora ; Chazan, Michael ; Kröger, Roland ; Thomas-Oates, Jane ; Harding, John H. ; Cappellini, Enrico ; Penkman, Kirsty ; Collins, Matthew James. / Protein sequences bound to mineral surfaces persist into deep time. In: eLife. 2016 ; Vol. 5.

Bibtex

@article{51e40669792247f89a44af3c91c032d7,
title = "Protein sequences bound to mineral surfaces persist into deep time",
abstract = "Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C).",
author = "Beatrice Demarchi and Shaun Hall and Teresa Roncal-Herrero and Freeman, {Colin L.} and Jos Woolley and Crisp, {Molly K.} and Julie Wilson and Fotakis, {Anna Katerina} and Roman Fischer and Kessler, {Benedikt M.} and Jersie-Christensen, {Rosa Rakownikow} and Olsen, {Jesper Velgaard} and James Haile and Jessica Thomas and Marean, {Curtis W.} and John Parkington and Samantha Presslee and Julia Lee-Thorp and Peter Ditchfield and Hamilton, {Jacqueline F.} and Ward, {Martyn W.} and Wang, {Chunting Michelle} and Shaw, {Marvin D.} and Terry Harrison and Manuel Dom{\'i}nguez-Rodrigo and MacPhee, {Ross D. E.} and Amandus Kwekason and Michaela Ecker and {Kolska Horwitz}, Liora and Michael Chazan and Roland Kr{\"o}ger and Jane Thomas-Oates and Harding, {John H.} and Enrico Cappellini and Kirsty Penkman and Collins, {Matthew James}",
year = "2016",
doi = "10.7554/eLife.17092",
language = "English",
volume = "5",
journal = "eLife",
issn = "2050-084X",
publisher = "eLife Sciences Publications Ltd.",

}

RIS

TY - JOUR

T1 - Protein sequences bound to mineral surfaces persist into deep time

AU - Demarchi, Beatrice

AU - Hall, Shaun

AU - Roncal-Herrero, Teresa

AU - Freeman, Colin L.

AU - Woolley, Jos

AU - Crisp, Molly K.

AU - Wilson, Julie

AU - Fotakis, Anna Katerina

AU - Fischer, Roman

AU - Kessler, Benedikt M.

AU - Jersie-Christensen, Rosa Rakownikow

AU - Olsen, Jesper Velgaard

AU - Haile, James

AU - Thomas, Jessica

AU - Marean, Curtis W.

AU - Parkington, John

AU - Presslee, Samantha

AU - Lee-Thorp, Julia

AU - Ditchfield, Peter

AU - Hamilton, Jacqueline F.

AU - Ward, Martyn W.

AU - Wang, Chunting Michelle

AU - Shaw, Marvin D.

AU - Harrison, Terry

AU - Domínguez-Rodrigo, Manuel

AU - MacPhee, Ross D. E.

AU - Kwekason, Amandus

AU - Ecker, Michaela

AU - Kolska Horwitz, Liora

AU - Chazan, Michael

AU - Kröger, Roland

AU - Thomas-Oates, Jane

AU - Harding, John H.

AU - Cappellini, Enrico

AU - Penkman, Kirsty

AU - Collins, Matthew James

PY - 2016

Y1 - 2016

N2 - Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C).

AB - Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C).

U2 - 10.7554/eLife.17092

DO - 10.7554/eLife.17092

M3 - Journal article

C2 - 27668515

VL - 5

JO - eLife

JF - eLife

SN - 2050-084X

M1 - e17092

ER -

ID: 166326974