The coexistence of the streaming instability and the vertical shear instability in protoplanetary disks: Planetesimal formation thresholds explored in two-dimensional global models

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 10.8 MB, PDF document

The streaming instability is a promising mechanism to induce the formation of planetesimals. Nonetheless, this process has been found in previous studies to require either a dust-to-gas surface density ratio or a dust size that is enhanced compared to observed values. Employing two-dimensional global simulations of protoplanetary disks, we show that the vertical shear instability and the streaming instability in concert can cause dust concentration that is sufficient for planetesimal formation for lower surface density ratios and smaller dust sizes than the streaming instability in isolation, and in particular under conditions that are consistent with observational constraints. This is because dust overdensities forming in pressure bumps induced by the vertical shear instability act as seeds for the streaming instability and are enhanced by it. While our two-dimensional model does not include self-gravity, we find that strong dust clumping and the formation (and dissolution) of gravitationally unstable overdensities can be robustly inferred from the evolution of the maximum or the mean dust-to-gas volume density ratio. The vertical shear instability puffs up the dust layer to an average mid-plane dust-to-gas density ratio that is significantly below unity. We therefore find that reaching a mid-plane density ratio of one is not necessary to trigger planetesimal formation via the streaming instability when it acts in unison with the vertical shear instability.

Original languageEnglish
Article numberA98
JournalAstronomy & Astrophysics
Volume666
Number of pages17
ISSN0004-6361
DOIs
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
©

    Research areas

  • Hydrodynamics, Instabilities, Methods: numerical, Planets and satellites: formation, Protoplanetary disks, Turbulence

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 325010946