Early modern knitted caps (fifteenth to sixteenth centuries): analyzing dyes in archaeological samples using microspectrofluorimetry complemented by HPLC–MS

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Early modern knitted caps (fifteenth to sixteenth centuries) : analyzing dyes in archaeological samples using microspectrofluorimetry complemented by HPLC–MS. / Nabais, Paula; Malcolm-Davies, Jane; Melo, Maria João; Teixeira, Natércia; Behlen, Beatrice.

In: Heritage Science, Vol. 11, 220, 2023.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Nabais, P, Malcolm-Davies, J, Melo, MJ, Teixeira, N & Behlen, B 2023, 'Early modern knitted caps (fifteenth to sixteenth centuries): analyzing dyes in archaeological samples using microspectrofluorimetry complemented by HPLC–MS', Heritage Science, vol. 11, 220. https://doi.org/10.1186/s40494-023-01020-4

APA

Nabais, P., Malcolm-Davies, J., Melo, M. J., Teixeira, N., & Behlen, B. (2023). Early modern knitted caps (fifteenth to sixteenth centuries): analyzing dyes in archaeological samples using microspectrofluorimetry complemented by HPLC–MS. Heritage Science, 11, [220]. https://doi.org/10.1186/s40494-023-01020-4

Vancouver

Nabais P, Malcolm-Davies J, Melo MJ, Teixeira N, Behlen B. Early modern knitted caps (fifteenth to sixteenth centuries): analyzing dyes in archaeological samples using microspectrofluorimetry complemented by HPLC–MS. Heritage Science. 2023;11. 220. https://doi.org/10.1186/s40494-023-01020-4

Author

Nabais, Paula ; Malcolm-Davies, Jane ; Melo, Maria João ; Teixeira, Natércia ; Behlen, Beatrice. / Early modern knitted caps (fifteenth to sixteenth centuries) : analyzing dyes in archaeological samples using microspectrofluorimetry complemented by HPLC–MS. In: Heritage Science. 2023 ; Vol. 11.

Bibtex

@article{4986e227586c471c83e2da6490f9f71d,
title = "Early modern knitted caps (fifteenth to sixteenth centuries): analyzing dyes in archaeological samples using microspectrofluorimetry complemented by HPLC–MS",
abstract = "The knitted cap was the ubiquitous and most visible garment men wore throughout early modern society, from apprentices to royals. Documentary evidence also suggests that red was a conventional color for specific garments in the sixteenth century, including knitted caps. However, most knitted caps in museum collections are now a muddy brown characteristic of archaeological textiles, and their original color has seldom been studied. Considering the potential of microspectrofluorimetry for analyzing dyes in ancient textiles and manuscript illuminations, this technique was tested on six caps dating from the fifteenth to sixteenth centuries examined in the Knitting in Early Modern Europe research project. The colors are in good preservation condition in two samples, whereas the others show extensive degradation. The emission and excitation spectra acquired allowed the identification of the similarities and differences between samples, grouping them into different dye sources such as cochineal-based and madder-based (RED1 and RED2, respectively). For the coif cap and split-brimmed cap in good condition, analysis through HPLC–MS confirmed the sources of the dyes as Rubia tinctorum and cochineal. It also disclosed the source for another coif cap as Kermes vermilio (RED4). The other knitted items are possibly madder-based (RED3), but HPLC–MS did not allow confirmation of the madder source. The continuing development of a database of excitation and emission spectra acquired from historical textiles, such as the knitted caps, will support the identification of dye sources and specific formulations. Although this technique demands a comprehensive database of references for comparison with the complex signals identified, it allows for rapid spectra acquisition, providing tremendously valuable information.",
keywords = "Caps, Knit, Molecular fluorescence, Natural dyes, Red dyes, Textiles",
author = "Paula Nabais and Jane Malcolm-Davies and Melo, {Maria Jo{\~a}o} and Nat{\'e}rcia Teixeira and Beatrice Behlen",
note = "Publisher Copyright: {\textcopyright} 2023, Springer Nature Switzerland AG.",
year = "2023",
doi = "10.1186/s40494-023-01020-4",
language = "English",
volume = "11",
journal = "Heritage Science",
issn = "2050-7445",
publisher = "BioMed Central Ltd.",

}

RIS

TY - JOUR

T1 - Early modern knitted caps (fifteenth to sixteenth centuries)

T2 - analyzing dyes in archaeological samples using microspectrofluorimetry complemented by HPLC–MS

AU - Nabais, Paula

AU - Malcolm-Davies, Jane

AU - Melo, Maria João

AU - Teixeira, Natércia

AU - Behlen, Beatrice

N1 - Publisher Copyright: © 2023, Springer Nature Switzerland AG.

PY - 2023

Y1 - 2023

N2 - The knitted cap was the ubiquitous and most visible garment men wore throughout early modern society, from apprentices to royals. Documentary evidence also suggests that red was a conventional color for specific garments in the sixteenth century, including knitted caps. However, most knitted caps in museum collections are now a muddy brown characteristic of archaeological textiles, and their original color has seldom been studied. Considering the potential of microspectrofluorimetry for analyzing dyes in ancient textiles and manuscript illuminations, this technique was tested on six caps dating from the fifteenth to sixteenth centuries examined in the Knitting in Early Modern Europe research project. The colors are in good preservation condition in two samples, whereas the others show extensive degradation. The emission and excitation spectra acquired allowed the identification of the similarities and differences between samples, grouping them into different dye sources such as cochineal-based and madder-based (RED1 and RED2, respectively). For the coif cap and split-brimmed cap in good condition, analysis through HPLC–MS confirmed the sources of the dyes as Rubia tinctorum and cochineal. It also disclosed the source for another coif cap as Kermes vermilio (RED4). The other knitted items are possibly madder-based (RED3), but HPLC–MS did not allow confirmation of the madder source. The continuing development of a database of excitation and emission spectra acquired from historical textiles, such as the knitted caps, will support the identification of dye sources and specific formulations. Although this technique demands a comprehensive database of references for comparison with the complex signals identified, it allows for rapid spectra acquisition, providing tremendously valuable information.

AB - The knitted cap was the ubiquitous and most visible garment men wore throughout early modern society, from apprentices to royals. Documentary evidence also suggests that red was a conventional color for specific garments in the sixteenth century, including knitted caps. However, most knitted caps in museum collections are now a muddy brown characteristic of archaeological textiles, and their original color has seldom been studied. Considering the potential of microspectrofluorimetry for analyzing dyes in ancient textiles and manuscript illuminations, this technique was tested on six caps dating from the fifteenth to sixteenth centuries examined in the Knitting in Early Modern Europe research project. The colors are in good preservation condition in two samples, whereas the others show extensive degradation. The emission and excitation spectra acquired allowed the identification of the similarities and differences between samples, grouping them into different dye sources such as cochineal-based and madder-based (RED1 and RED2, respectively). For the coif cap and split-brimmed cap in good condition, analysis through HPLC–MS confirmed the sources of the dyes as Rubia tinctorum and cochineal. It also disclosed the source for another coif cap as Kermes vermilio (RED4). The other knitted items are possibly madder-based (RED3), but HPLC–MS did not allow confirmation of the madder source. The continuing development of a database of excitation and emission spectra acquired from historical textiles, such as the knitted caps, will support the identification of dye sources and specific formulations. Although this technique demands a comprehensive database of references for comparison with the complex signals identified, it allows for rapid spectra acquisition, providing tremendously valuable information.

KW - Caps

KW - Knit

KW - Molecular fluorescence

KW - Natural dyes

KW - Red dyes

KW - Textiles

U2 - 10.1186/s40494-023-01020-4

DO - 10.1186/s40494-023-01020-4

M3 - Journal article

AN - SCOPUS:85174461715

VL - 11

JO - Heritage Science

JF - Heritage Science

SN - 2050-7445

M1 - 220

ER -

ID: 371463578