Holistic monitoring of freshwater and terrestrial vertebrates by camera trapping and environmental DNA

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 4.43 MB, PDF document

The anthropogenic impact on the world's ecosystems is severe and the need for non-invasive, cost-effective tools for monitoring and understanding those impacts are therefore urgent. Here, we combine two such methods in a comprehensive multi-year study; camera trapping (CT) and analysis of environmental DNA (eDNA), in river marginal zones of a temperate, wetland Nature Park in Denmark. CT was performed from 2015 to 2019 for a total of 8778 camera trap days and yielded 24,376 animal observations. The CT observations covered 87 taxa, of which 78 were identified to species level, and 73 were wild native species. For eDNA metabarcoding, a total of 114 freshwater samples were collected from eight sites in all four seasons from 2017 to 2018. The eDNA results yielded a total detection of 80 taxa, of which 74 were identified to species level, and 65 were wild native species. While the number of taxa detected with the two methods were comparable, the species overlap was only 20%. In combination, CT and eDNA monitoring thus yielded a total of 115 wild species (20 fishes, 4 amphibians, one snake, 23 mammals, and 67 birds), representing half of the species found via conventional surveys over the last ca. 20 years (83% of fishes, 68% of mammals, 67% of amphibians, 41% of birds, and 20% of reptiles). Our study demonstrates that a holistic approach combining two non-invasive methods, CT, and eDNA metabarcoding, has great potential as a cost-effective biomonitoring tool for vertebrates.

Original languageEnglish
JournalEnvironmental DNA
Volume5
Issue number6
Pages (from-to)1608-1622
Number of pages15
ISSN2637-4943
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2023 The Authors. Environmental DNA published by John Wiley & Sons Ltd.

    Research areas

  • biodiversity, camera traps, Denmark, eDNA, metabarcoding, monitoring

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 371469585