Pollination supply models from a local to global scale

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Pollination supply models from a local to global scale. / Giménez-García, Angel; Allen-Perkins, Alfonso; Bartomeus, Ignasi; Balbi, Stefano; Knapp, Jessica L.; Hevia, Violeta; Woodcock, Ben Alex; Smagghe, Guy; Miñarro, Marcos; Eeraerts, Maxime; Colville, Jonathan F.; Hipólito, Juliana; Cavigliasso, Pablo; Nates-Parra, Guiomar; Herrera, José M.; Cusser, Sarah; Simmons, Benno I.; Wolters, Volkmar; Jha, Shalene; Freitas, Breno M.; Horgan, Finbarr G.; Artz, Derek R.; Sidhu, C. Sheena; Otieno, Mark; Boreux, Virginie; Biddinger, David J.; Klein, Alexandra-Maria; Joshi, Neelendra K.; Stewart, Rebecca I. A.; Albrecht, Matthias; Nicholson, Charlie C.; O'Reilly, Alison D.; Crowder, David William; Burns, Katherine L. W.; Jodar, Diego Nicolás Nabaes; Garibaldi, Lucas Alejandro; Sutter, Louis; Dupont, Yoko L.; Dalsgaard, Bo; Coutinho, Jeferson Gabriel Da Encarnação; Lázaro, Amparo; Andersson, Georg K. S.; Raine, Nigel E.; Krishnan, Smitha; Dainese, Matteo; van der Werf, Wopke; Smith, Henrik G.; Magrach, Ainhoa.

In: Web Ecology, Vol. 23, No. 2, 2023, p. 99-129.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Giménez-García, A, Allen-Perkins, A, Bartomeus, I, Balbi, S, Knapp, JL, Hevia, V, Woodcock, BA, Smagghe, G, Miñarro, M, Eeraerts, M, Colville, JF, Hipólito, J, Cavigliasso, P, Nates-Parra, G, Herrera, JM, Cusser, S, Simmons, BI, Wolters, V, Jha, S, Freitas, BM, Horgan, FG, Artz, DR, Sidhu, CS, Otieno, M, Boreux, V, Biddinger, DJ, Klein, A-M, Joshi, NK, Stewart, RIA, Albrecht, M, Nicholson, CC, O'Reilly, AD, Crowder, DW, Burns, KLW, Jodar, DNN, Garibaldi, LA, Sutter, L, Dupont, YL, Dalsgaard, B, Coutinho, JGDE, Lázaro, A, Andersson, GKS, Raine, NE, Krishnan, S, Dainese, M, van der Werf, W, Smith, HG & Magrach, A 2023, 'Pollination supply models from a local to global scale', Web Ecology, vol. 23, no. 2, pp. 99-129. https://doi.org/10.5194/we-23-99-2023

APA

Giménez-García, A., Allen-Perkins, A., Bartomeus, I., Balbi, S., Knapp, J. L., Hevia, V., Woodcock, B. A., Smagghe, G., Miñarro, M., Eeraerts, M., Colville, J. F., Hipólito, J., Cavigliasso, P., Nates-Parra, G., Herrera, J. M., Cusser, S., Simmons, B. I., Wolters, V., Jha, S., ... Magrach, A. (2023). Pollination supply models from a local to global scale. Web Ecology, 23(2), 99-129. https://doi.org/10.5194/we-23-99-2023

Vancouver

Giménez-García A, Allen-Perkins A, Bartomeus I, Balbi S, Knapp JL, Hevia V et al. Pollination supply models from a local to global scale. Web Ecology. 2023;23(2):99-129. https://doi.org/10.5194/we-23-99-2023

Author

Giménez-García, Angel ; Allen-Perkins, Alfonso ; Bartomeus, Ignasi ; Balbi, Stefano ; Knapp, Jessica L. ; Hevia, Violeta ; Woodcock, Ben Alex ; Smagghe, Guy ; Miñarro, Marcos ; Eeraerts, Maxime ; Colville, Jonathan F. ; Hipólito, Juliana ; Cavigliasso, Pablo ; Nates-Parra, Guiomar ; Herrera, José M. ; Cusser, Sarah ; Simmons, Benno I. ; Wolters, Volkmar ; Jha, Shalene ; Freitas, Breno M. ; Horgan, Finbarr G. ; Artz, Derek R. ; Sidhu, C. Sheena ; Otieno, Mark ; Boreux, Virginie ; Biddinger, David J. ; Klein, Alexandra-Maria ; Joshi, Neelendra K. ; Stewart, Rebecca I. A. ; Albrecht, Matthias ; Nicholson, Charlie C. ; O'Reilly, Alison D. ; Crowder, David William ; Burns, Katherine L. W. ; Jodar, Diego Nicolás Nabaes ; Garibaldi, Lucas Alejandro ; Sutter, Louis ; Dupont, Yoko L. ; Dalsgaard, Bo ; Coutinho, Jeferson Gabriel Da Encarnação ; Lázaro, Amparo ; Andersson, Georg K. S. ; Raine, Nigel E. ; Krishnan, Smitha ; Dainese, Matteo ; van der Werf, Wopke ; Smith, Henrik G. ; Magrach, Ainhoa. / Pollination supply models from a local to global scale. In: Web Ecology. 2023 ; Vol. 23, No. 2. pp. 99-129.

Bibtex

@article{a6f8fee0bc1d43eea764aef31de2c0ac,
title = "Pollination supply models from a local to global scale",
abstract = "Ecological intensification has been embraced with great interest by the academic sector but is still rarely taken up by farmers because monitoring the state of different ecological functions is not straightforward. Modelling tools can represent a more accessible alternative of measuring ecological functions, which could help promote their use amongst farmers and other decision-makers. In the case of crop pollination, modelling has traditionally followed either a mechanistic or a data-driven approach. Mechanistic models simulate the habitat preferences and foraging behaviour of pollinators, while data-driven models associate georeferenced variables with real observations. Here, we test these two approaches to predict pollination supply and validate these predictions using data from a newly released global dataset on pollinator visitation rates to different crops. We use one of the most extensively used models for the mechanistic approach, while for the data-driven approach, we select from among a comprehensive set of state-of-The-Art machine-learning models. Moreover, we explore a mixed approach, where data-derived inputs, rather than expert assessment, inform the mechanistic model. We find that, at a global scale, machine-learning models work best, offering a rank correlation coefficient between predictions and observations of pollinator visitation rates of 0.56. In turn, the mechanistic model works moderately well at a global scale for wild bees other than bumblebees. Biomes characterized by temperate or Mediterranean forests show a better agreement between mechanistic model predictions and observations, probably due to more comprehensive ecological knowledge and therefore better parameterization of input variables for these biomes. This study highlights the challenges of transferring input variables across multiple biomes, as expected given the different composition of species in different biomes. Our results provide clear guidance on which pollination supply models perform best at different spatial scales-the first step towards bridging the stakeholder-Academia gap in modelling ecosystem service delivery under ecological intensification. ",
author = "Angel Gim{\'e}nez-Garc{\'i}a and Alfonso Allen-Perkins and Ignasi Bartomeus and Stefano Balbi and Knapp, {Jessica L.} and Violeta Hevia and Woodcock, {Ben Alex} and Guy Smagghe and Marcos Mi{\~n}arro and Maxime Eeraerts and Colville, {Jonathan F.} and Juliana Hip{\'o}lito and Pablo Cavigliasso and Guiomar Nates-Parra and Herrera, {Jos{\'e} M.} and Sarah Cusser and Simmons, {Benno I.} and Volkmar Wolters and Shalene Jha and Freitas, {Breno M.} and Horgan, {Finbarr G.} and Artz, {Derek R.} and Sidhu, {C. Sheena} and Mark Otieno and Virginie Boreux and Biddinger, {David J.} and Alexandra-Maria Klein and Joshi, {Neelendra K.} and Stewart, {Rebecca I. A.} and Matthias Albrecht and Nicholson, {Charlie C.} and O'Reilly, {Alison D.} and Crowder, {David William} and Burns, {Katherine L. W.} and Jodar, {Diego Nicol{\'a}s Nabaes} and Garibaldi, {Lucas Alejandro} and Louis Sutter and Dupont, {Yoko L.} and Bo Dalsgaard and Coutinho, {Jeferson Gabriel Da Encarna{\c c}{\~a}o} and Amparo L{\'a}zaro and Andersson, {Georg K. S.} and Raine, {Nigel E.} and Smitha Krishnan and Matteo Dainese and {van der Werf}, Wopke and Smith, {Henrik G.} and Ainhoa Magrach",
note = "Publisher Copyright: {\textcopyright} 2023 Copernicus GmbH. All rights reserved.",
year = "2023",
doi = "10.5194/we-23-99-2023",
language = "English",
volume = "23",
pages = "99--129",
journal = "Web Ecology",
issn = "1399-1183",
publisher = "Copernicus GmbH",
number = "2",

}

RIS

TY - JOUR

T1 - Pollination supply models from a local to global scale

AU - Giménez-García, Angel

AU - Allen-Perkins, Alfonso

AU - Bartomeus, Ignasi

AU - Balbi, Stefano

AU - Knapp, Jessica L.

AU - Hevia, Violeta

AU - Woodcock, Ben Alex

AU - Smagghe, Guy

AU - Miñarro, Marcos

AU - Eeraerts, Maxime

AU - Colville, Jonathan F.

AU - Hipólito, Juliana

AU - Cavigliasso, Pablo

AU - Nates-Parra, Guiomar

AU - Herrera, José M.

AU - Cusser, Sarah

AU - Simmons, Benno I.

AU - Wolters, Volkmar

AU - Jha, Shalene

AU - Freitas, Breno M.

AU - Horgan, Finbarr G.

AU - Artz, Derek R.

AU - Sidhu, C. Sheena

AU - Otieno, Mark

AU - Boreux, Virginie

AU - Biddinger, David J.

AU - Klein, Alexandra-Maria

AU - Joshi, Neelendra K.

AU - Stewart, Rebecca I. A.

AU - Albrecht, Matthias

AU - Nicholson, Charlie C.

AU - O'Reilly, Alison D.

AU - Crowder, David William

AU - Burns, Katherine L. W.

AU - Jodar, Diego Nicolás Nabaes

AU - Garibaldi, Lucas Alejandro

AU - Sutter, Louis

AU - Dupont, Yoko L.

AU - Dalsgaard, Bo

AU - Coutinho, Jeferson Gabriel Da Encarnação

AU - Lázaro, Amparo

AU - Andersson, Georg K. S.

AU - Raine, Nigel E.

AU - Krishnan, Smitha

AU - Dainese, Matteo

AU - van der Werf, Wopke

AU - Smith, Henrik G.

AU - Magrach, Ainhoa

N1 - Publisher Copyright: © 2023 Copernicus GmbH. All rights reserved.

PY - 2023

Y1 - 2023

N2 - Ecological intensification has been embraced with great interest by the academic sector but is still rarely taken up by farmers because monitoring the state of different ecological functions is not straightforward. Modelling tools can represent a more accessible alternative of measuring ecological functions, which could help promote their use amongst farmers and other decision-makers. In the case of crop pollination, modelling has traditionally followed either a mechanistic or a data-driven approach. Mechanistic models simulate the habitat preferences and foraging behaviour of pollinators, while data-driven models associate georeferenced variables with real observations. Here, we test these two approaches to predict pollination supply and validate these predictions using data from a newly released global dataset on pollinator visitation rates to different crops. We use one of the most extensively used models for the mechanistic approach, while for the data-driven approach, we select from among a comprehensive set of state-of-The-Art machine-learning models. Moreover, we explore a mixed approach, where data-derived inputs, rather than expert assessment, inform the mechanistic model. We find that, at a global scale, machine-learning models work best, offering a rank correlation coefficient between predictions and observations of pollinator visitation rates of 0.56. In turn, the mechanistic model works moderately well at a global scale for wild bees other than bumblebees. Biomes characterized by temperate or Mediterranean forests show a better agreement between mechanistic model predictions and observations, probably due to more comprehensive ecological knowledge and therefore better parameterization of input variables for these biomes. This study highlights the challenges of transferring input variables across multiple biomes, as expected given the different composition of species in different biomes. Our results provide clear guidance on which pollination supply models perform best at different spatial scales-the first step towards bridging the stakeholder-Academia gap in modelling ecosystem service delivery under ecological intensification.

AB - Ecological intensification has been embraced with great interest by the academic sector but is still rarely taken up by farmers because monitoring the state of different ecological functions is not straightforward. Modelling tools can represent a more accessible alternative of measuring ecological functions, which could help promote their use amongst farmers and other decision-makers. In the case of crop pollination, modelling has traditionally followed either a mechanistic or a data-driven approach. Mechanistic models simulate the habitat preferences and foraging behaviour of pollinators, while data-driven models associate georeferenced variables with real observations. Here, we test these two approaches to predict pollination supply and validate these predictions using data from a newly released global dataset on pollinator visitation rates to different crops. We use one of the most extensively used models for the mechanistic approach, while for the data-driven approach, we select from among a comprehensive set of state-of-The-Art machine-learning models. Moreover, we explore a mixed approach, where data-derived inputs, rather than expert assessment, inform the mechanistic model. We find that, at a global scale, machine-learning models work best, offering a rank correlation coefficient between predictions and observations of pollinator visitation rates of 0.56. In turn, the mechanistic model works moderately well at a global scale for wild bees other than bumblebees. Biomes characterized by temperate or Mediterranean forests show a better agreement between mechanistic model predictions and observations, probably due to more comprehensive ecological knowledge and therefore better parameterization of input variables for these biomes. This study highlights the challenges of transferring input variables across multiple biomes, as expected given the different composition of species in different biomes. Our results provide clear guidance on which pollination supply models perform best at different spatial scales-the first step towards bridging the stakeholder-Academia gap in modelling ecosystem service delivery under ecological intensification.

U2 - 10.5194/we-23-99-2023

DO - 10.5194/we-23-99-2023

M3 - Journal article

AN - SCOPUS:85178190049

VL - 23

SP - 99

EP - 129

JO - Web Ecology

JF - Web Ecology

SN - 1399-1183

IS - 2

ER -

ID: 376456740