Use of carrion fly iDNA metabarcoding to monitor invasive and native mammals

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 5.89 MB, PDF document

Severely fragmented habitats increase the risk of extirpation of native mammal populations through isolation, increased edge effects, and predation. Therefore, monitoring the movement of mammal populations through anthropogenically altered landscapes can inform conservation. We used metabarcoding of invertebrate-derived DNA (iDNA) from carrion flies (Calliphoridae and Sarcophagidae) to track mammal populations in the wheat belt of southwestern Australia, where widespread clearing for agriculture has removed most of the native perennial vegetation and replaced it with an agricultural system. We investigated whether the localization of the iDNA signal reflected the predicted distribution of 4 native species—echidna (Tachyglossus aculeatus), numbat (Myrmecobius fasciatus), woylie (Bettongia penicillata), and chuditch (Dasyurus geoffroii)—and 2 non-native, invasive mammal species—fox (Vulpes vulpes) and feral cat (Felis catus). We collected bulk iDNA samples (n = 150 samples from 3428 carrion flies) at 3 time points from 3 conservation reserves and 35 road edges between them. We detected 14 of the 40 mammal species known from the region, including our target species. Most detections of target taxa were in conservation reserves. There were a few detections from road edges. We detected foxes and feral cats throughout the study area, including all conservation reserves. There was a significant difference between the diversity (F3, 98 = 5.91, p < 0.001) and composition (F3, 43 = 1.72, p < 0.01) of taxa detections on road edges and conservation reserves. Conservation reserves hosted more native biodiversity than road edges. Our results suggest that the signals from iDNA reflect the known distribution of target mammals in this region. The development of iDNA methods shows promise for future noninvasive monitoring of mammals. With further development, iDNA metabarcoding could inform decision-making related to conservation of endangered taxa, invasive species management, and impacts of habitat fragmentation.

Original languageEnglish
Article numbere14098
JournalConservation Biology
Volume37
Issue number5
Number of pages12
ISSN0888-8892
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2023 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.

    Research areas

  • ADN derivado de invertebrados, cat, conservación, conservation, distribución de mamíferos, fox, fragmentación del hábitat, gato, habitat fragmentation, invertebrate-derived DNA, mammal distribution, marsupial, zorro

ID: 358085002