Modulation of the electroosmotic mobility using polyelectrolyte multilayer coatings for protein analysis by capillary electrophoresis

Research output: Contribution to journalJournal articleResearchpeer-review

Successive multiple ionic-polymer layers (SMIL) coatings have been often used in capillary electrophoresis due to their simplicity to implement and regenerate. However, the performances of the separation are strongly dependent on the nature of the polyelectrolyte partners used to build the SMIL coating. In this work, we investigate new couples of polyelectrolytes that were not tested before: namely, polybrene (PB), quaternized diethylaminoethyl dextran (DEAEDq) and ε-poly(lysine) (ε-PLL), as polycations, in combination with poly(acrylic acid), dextran sulfate, poly(styrenesulfonate), poly(methacrylic acid) and poly(L-lysine citramide), as polyanions. Systematic study of intra- and inter-capillaries repeatabilities/reproducibilities was performed based on the determination of migration time, separation efficiency and electroosmotic mobility. Interestingly, the electroosmotic flow was found to vary with the nature of the polycation on a broad range of electroosmotic mobility decreasing in magnitude in the order of PB>ε-PLL > DEAEDq, whatever the polyanion associated. Application of the coatings to the separation of proteins is illustrated in a 0.5 M acetic acid BGE, including CE-MS separation of ribonuclease B-glycoforms of the same mass (positional or structural isomers).

Original languageEnglish
JournalAnalytica Chimica Acta
Volume1057
Pages (from-to)152-161
Number of pages10
ISSN0003-2670
DOIs
Publication statusPublished - 30 May 2019

Bibliographical note

Publisher Copyright:
© 2019 Elsevier B.V.

    Research areas

  • Capillary coatings, Polyelectrolyte multilayers, Polymer coatings, Protein separation

ID: 389073131