Induction of novel CD8+ T-cell responses during chronic untreated HIV-1 infection by immunization with subdominant cytotoxic T-lymphocyte epitopes

Research output: Contribution to journalJournal articleResearchpeer-review

  • Henrik Kloverpris
  • Ingrid Karlsson
  • Jesper Bonde
  • Mette Thorn
  • Julie Hentze
  • Betina Andresen
  • Anders Fomsgaard
  • Henrik Kloverpris
  • Ingrid Karlsson
  • Jesper Bonde
  • Mette Thorn
  • Lasse Vinner
  • Anders E Pedersen
  • Julie L Hentze
  • Betina S Andresen
  • Inge M Svane
  • Jan Gerstoft
  • Anders Fomsgaard
OBJECTIVE:: To investigate the potential to induce additional cytotoxic T-lymphocyte (CTL) immunity during chronic HIV-1 infection. DESIGN:: We selected infrequently targeted or subdominant but conserved HLA-A*0201-binding epitopes in Gag, Pol, Env, Vpu and Vif. These relatively immune silent epitopes were modified as anchor-optimized peptides to improve immunogenicity and delivered on autologous monocyte-derived dendritic cells (MDDCs). METHODS:: Twelve treatment-naïve HLA-A*0201 HIV-1-infected Danish individuals received 1 x 10 MDDCs subcutaneously (s.c.) (weeks 0, 2, 4 and 8), pulsed with seven CD8 T-cell epitopes and three CD4 T-cell epitopes. Epitope-specific responses were evaluated by intracellular cytokine staining for interferon-gamma, tumor necrosis factor alpha and interleukin-2 and/or pentamer labeling 3 weeks prior to, 10 weeks after and 32 weeks after the first immunization. RESULTS:: Previously undetected T-cell responses specific for one or more epitopes were induced in all 12 individuals. Half of the participants had sustained CD4 T-cell responses 32 weeks after immunization. No severe adverse effects were observed. No overall or sustained change in viral load or CD4 T-cell counts was observed. CONCLUSION:: These data show that it is possible to generate new T-cell responses in treatment-naive HIV-1-infected individuals despite high viral loads, and thereby redirect immunity to target new multiple and rationally selected subdominant CTL epitopes. Further optimization could lead to stronger and more durable cellular responses to selected epitopes with the potential to control viral replication and prevent disease in HIV-1-infected individuals.
Original languageEnglish
JournalAIDS
Volume23
Issue number11
Pages (from-to)1329-40
Number of pages11
ISSN0269-9370
DOIs
Publication statusPublished - 2009

ID: 12868019