Old wild wolves: ancient DNA survey unveils population dynamics in Late Pleistocene and Holocene Italian remains

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Old wild wolves : ancient DNA survey unveils population dynamics in Late Pleistocene and Holocene Italian remains. / Ciucani, Marta Maria; Palumbo, Davide; Galaverni, Marco; Serventi, Patrizia; Fabbri, Elena; Ravegnini, Gloria; Angelini, Sabrina; Maini, Elena; Persico, Davide; Caniglia, Romolo; Cilli, Elisabetta.

In: PeerJ, Vol. 7, e6424, 2019.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Ciucani, MM, Palumbo, D, Galaverni, M, Serventi, P, Fabbri, E, Ravegnini, G, Angelini, S, Maini, E, Persico, D, Caniglia, R & Cilli, E 2019, 'Old wild wolves: ancient DNA survey unveils population dynamics in Late Pleistocene and Holocene Italian remains', PeerJ, vol. 7, e6424. https://doi.org/10.7717/peerj.6424

APA

Ciucani, M. M., Palumbo, D., Galaverni, M., Serventi, P., Fabbri, E., Ravegnini, G., Angelini, S., Maini, E., Persico, D., Caniglia, R., & Cilli, E. (2019). Old wild wolves: ancient DNA survey unveils population dynamics in Late Pleistocene and Holocene Italian remains. PeerJ, 7, [e6424]. https://doi.org/10.7717/peerj.6424

Vancouver

Ciucani MM, Palumbo D, Galaverni M, Serventi P, Fabbri E, Ravegnini G et al. Old wild wolves: ancient DNA survey unveils population dynamics in Late Pleistocene and Holocene Italian remains. PeerJ. 2019;7. e6424. https://doi.org/10.7717/peerj.6424

Author

Ciucani, Marta Maria ; Palumbo, Davide ; Galaverni, Marco ; Serventi, Patrizia ; Fabbri, Elena ; Ravegnini, Gloria ; Angelini, Sabrina ; Maini, Elena ; Persico, Davide ; Caniglia, Romolo ; Cilli, Elisabetta. / Old wild wolves : ancient DNA survey unveils population dynamics in Late Pleistocene and Holocene Italian remains. In: PeerJ. 2019 ; Vol. 7.

Bibtex

@article{174e902815084cd78da5700fb01e4944,
title = "Old wild wolves: ancient DNA survey unveils population dynamics in Late Pleistocene and Holocene Italian remains",
abstract = "Background: The contemporary Italian wolf (Canis lupus italicus) represents a case of morphological and genetic uniqueness. Today, Italian wolves are also the only documented population to fall exclusively within the mitochondrial haplogroup 2, which was the most diffused across Eurasian and North American wolves during the Late Pleistocene. However, the dynamics leading to such distinctiveness are still debated.Methods: In order to shed light on the ancient genetic variability of this wolf population and on the origin of its current diversity, we collected 19 Late Pleistocene-Holocene samples from northern Italy, which we analyzed at a short portion of the hypervariable region 1 of the mitochondrial DNA, highly informative for wolf and dog phylogenetic analyses.Results: Four out of the six detected haplotypes matched the ones found in ancient wolves from northern Europe and Beringia, or in modern European and Chinese wolves, and appeared closely related to the two haplotypes currently found in Italian wolves. The haplotype of two Late Pleistocene samples matched with primitive and contemporary dog sequences from the canine mitochondrial clade A. All these haplotypes belonged to haplogroup 2. The only exception was a Holocene sample dated 3,250 years ago, affiliated to haplogroup 1.Discussion: In this study we describe the genetic variability of the most ancient wolf specimens from Italy analyzed so far, providing a preliminary overview of the genetic make-up of the population that inhabited this area from the last glacial maximum to the Middle Age period. Our results endorsed that the genetic diversity carried by the Pleistocene wolves here analyzed showed a strong continuity with other northern Eurasian wolf specimens from the same chronological period. Contrarily, the Holocene samples showed a greater similarity only with modern sequences from Europe and Asia, and the occurrence of an haplogroup 1 haplotype allowed to date back previous finding about its presence in this area. Moreover, the unexpected discovery of a 24,700-year-old sample carrying a haplotype that, from the fragment here obtained, falls within the canine clade A, could represent the oldest evidence in Europe of such dog-rich clade. All these findings suggest complex population dynamics that deserve to be further investigated based on mitochondrial or whole genome sequencing.",
author = "Ciucani, {Marta Maria} and Davide Palumbo and Marco Galaverni and Patrizia Serventi and Elena Fabbri and Gloria Ravegnini and Sabrina Angelini and Elena Maini and Davide Persico and Romolo Caniglia and Elisabetta Cilli",
year = "2019",
doi = "10.7717/peerj.6424",
language = "English",
volume = "7",
journal = "PeerJ",
issn = "2167-8359",
publisher = "PeerJ",

}

RIS

TY - JOUR

T1 - Old wild wolves

T2 - ancient DNA survey unveils population dynamics in Late Pleistocene and Holocene Italian remains

AU - Ciucani, Marta Maria

AU - Palumbo, Davide

AU - Galaverni, Marco

AU - Serventi, Patrizia

AU - Fabbri, Elena

AU - Ravegnini, Gloria

AU - Angelini, Sabrina

AU - Maini, Elena

AU - Persico, Davide

AU - Caniglia, Romolo

AU - Cilli, Elisabetta

PY - 2019

Y1 - 2019

N2 - Background: The contemporary Italian wolf (Canis lupus italicus) represents a case of morphological and genetic uniqueness. Today, Italian wolves are also the only documented population to fall exclusively within the mitochondrial haplogroup 2, which was the most diffused across Eurasian and North American wolves during the Late Pleistocene. However, the dynamics leading to such distinctiveness are still debated.Methods: In order to shed light on the ancient genetic variability of this wolf population and on the origin of its current diversity, we collected 19 Late Pleistocene-Holocene samples from northern Italy, which we analyzed at a short portion of the hypervariable region 1 of the mitochondrial DNA, highly informative for wolf and dog phylogenetic analyses.Results: Four out of the six detected haplotypes matched the ones found in ancient wolves from northern Europe and Beringia, or in modern European and Chinese wolves, and appeared closely related to the two haplotypes currently found in Italian wolves. The haplotype of two Late Pleistocene samples matched with primitive and contemporary dog sequences from the canine mitochondrial clade A. All these haplotypes belonged to haplogroup 2. The only exception was a Holocene sample dated 3,250 years ago, affiliated to haplogroup 1.Discussion: In this study we describe the genetic variability of the most ancient wolf specimens from Italy analyzed so far, providing a preliminary overview of the genetic make-up of the population that inhabited this area from the last glacial maximum to the Middle Age period. Our results endorsed that the genetic diversity carried by the Pleistocene wolves here analyzed showed a strong continuity with other northern Eurasian wolf specimens from the same chronological period. Contrarily, the Holocene samples showed a greater similarity only with modern sequences from Europe and Asia, and the occurrence of an haplogroup 1 haplotype allowed to date back previous finding about its presence in this area. Moreover, the unexpected discovery of a 24,700-year-old sample carrying a haplotype that, from the fragment here obtained, falls within the canine clade A, could represent the oldest evidence in Europe of such dog-rich clade. All these findings suggest complex population dynamics that deserve to be further investigated based on mitochondrial or whole genome sequencing.

AB - Background: The contemporary Italian wolf (Canis lupus italicus) represents a case of morphological and genetic uniqueness. Today, Italian wolves are also the only documented population to fall exclusively within the mitochondrial haplogroup 2, which was the most diffused across Eurasian and North American wolves during the Late Pleistocene. However, the dynamics leading to such distinctiveness are still debated.Methods: In order to shed light on the ancient genetic variability of this wolf population and on the origin of its current diversity, we collected 19 Late Pleistocene-Holocene samples from northern Italy, which we analyzed at a short portion of the hypervariable region 1 of the mitochondrial DNA, highly informative for wolf and dog phylogenetic analyses.Results: Four out of the six detected haplotypes matched the ones found in ancient wolves from northern Europe and Beringia, or in modern European and Chinese wolves, and appeared closely related to the two haplotypes currently found in Italian wolves. The haplotype of two Late Pleistocene samples matched with primitive and contemporary dog sequences from the canine mitochondrial clade A. All these haplotypes belonged to haplogroup 2. The only exception was a Holocene sample dated 3,250 years ago, affiliated to haplogroup 1.Discussion: In this study we describe the genetic variability of the most ancient wolf specimens from Italy analyzed so far, providing a preliminary overview of the genetic make-up of the population that inhabited this area from the last glacial maximum to the Middle Age period. Our results endorsed that the genetic diversity carried by the Pleistocene wolves here analyzed showed a strong continuity with other northern Eurasian wolf specimens from the same chronological period. Contrarily, the Holocene samples showed a greater similarity only with modern sequences from Europe and Asia, and the occurrence of an haplogroup 1 haplotype allowed to date back previous finding about its presence in this area. Moreover, the unexpected discovery of a 24,700-year-old sample carrying a haplotype that, from the fragment here obtained, falls within the canine clade A, could represent the oldest evidence in Europe of such dog-rich clade. All these findings suggest complex population dynamics that deserve to be further investigated based on mitochondrial or whole genome sequencing.

U2 - 10.7717/peerj.6424

DO - 10.7717/peerj.6424

M3 - Journal article

C2 - 30944772

VL - 7

JO - PeerJ

JF - PeerJ

SN - 2167-8359

M1 - e6424

ER -

ID: 241105079