Visualizing RNA polymers produced by hot wet-dry cycling

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 3.88 MB, PDF document

It is possible that the transition from abiotic systems to life relied on RNA polymers that served as ribozyme-like catalysts and for storing genetic information. The source of such polymers is uncertain, but previous investigations reported that wet–dry cycles simulating prebiotic hot springs provide sufficient energy to drive condensation reactions of mononucleotides to form oligomers and polymers. The aim of the study reported here was to verify this claim and visualize the products prepared from solutions composed of single mononucleotides and 1:1 mixture of two mononucleotides. Therefore, we designed experiments that allowed comparisons of all such mixtures representing six combinations of the four mononucleotides of RNA. We observed irregular stringy patches and crystal strands when wet-dry cycling was performed at room temperature (20 °C). However, when the same solutions were exposed to wet–dry cycles at 80 °C, we observed what appeared to be true polymers. Their thickness was consistent with RNA-like products composed of covalently bonded monomers, while irregular strings and crystal segments of mononucleotides dried or cycled at room temperature were consistent with structures assembled and stabilized by weak hydrogen bonds. In a few instances we observed rings with short polymer attachments. These observations are consistent with previous claims of polymerization during wet–dry cycling. We conclude that RNA-like polymers and rings could have been synthesized non-enzymatically in freshwater hot springs on the prebiotic Earth with sizes sufficient to fold into ribozymes and genetic molecules required for life to begin.

Original languageEnglish
Article number10098
JournalScientific Reports
Volume12
Number of pages11
ISSN2045-2322
DOIs
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 315859493